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1. Introduction

The rectilinear ion trap (RIT) mass spectrometer, invented by
Cooks and co-workers [19,32], has a 6-electrode mass analyzer
with four planar rectangular electrodes (arranged symmetrically
around the central axis) constituting the central section and two
flat electrodes, facing the central section, forming the endcaps. The
geometry of the RIT is a simplification of the geometry of the linear
ion trap (LIT) [3], which has a four hyperbolic rod central section and
two electrically isolated segments of the central section acting as
the endcap electrodes. Both the LIT and the RIT are two-dimensional
(2D) analogs of the well known three-dimensional (3D) Paul trap
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igations of directionality of ion ejection in stretched rectilinear ion traps
ometries have been investigated. In all cases, one pair of electrodes has

er pair has no slits. The studied traps include the RIT-S, in which the mass
trically positioned around the central axis; the RIT-X, in which the mass
irection of the electrodes which have slits (labeled as x-direction); and
alyzer has a stretch in the direction of the electrodes which have no slits

out on two-dimensional (2D) fields at the centre of an infinitely long mass
t method (BEM) has been used for field computations. The trajectory of
using Runge Kutta fourth order integration.
e been carried out on each of the RIT-S, the RIT-X and the RIT-Y to check

n. In the first, we numerically obtain the stability region on the potential
e generate an escape velocity plot with Udc = 0 for different values of Vrf.
ass selective boundary ejection experiment on a single ion.
xpected, all three simulations show that there is an equal probability of

in either of the x- or y-directions. For the stretched traps, however, the
nt. For the RIT-X, all three simulations suggest that ion destabilization at
the x-direction. Similarly, for the RIT-Y, ions preferentially get destabilized

reaching the trap boundary overwhelmingly prefer the stretch direction.
© 2008 Elsevier B.V. All rights reserved.
[20]. For the trap operation, the two opposite pairs of electrodes
in the central section are each electrically shorted and trapping is
effected by application of rf-only or rf/dc potential across the pairs.
Trapping in the axial direction is achieved by application of a dc
potential on the endcaps.

Two major advantages that the LIT has over its 3D counter-
part are its greatly improved trapping efficiency [6,12,23] and its
enhanced sensitivity [24,22]. It is to utilize these features in a minia-
turizable structure that Ouyang et al. [19] conceived the RIT.

To improve the performance of the LIT and the RIT, researchers
have modified the field within the trap. These modifications
introduced a cubic (octopole) term in the field to overcome the
deleterious effect of the square (hexapole) term in the field, a les-
son learnt from the 3D Paul trap where “stretching” of the geometry
from its ideal configuration improved machine performance [29].
To increase the fragmentation efficiency Collings [4] introduced
extra electrodes in between the circular rods of the LIT and Michaud
et al. [18] used two different rod diameters to study its effect on the
trap performance. For the RIT, Ouyang et al. [19] and Zhang et al.
[32] have stretched the central section in one direction to obtain
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Fig. 1. Mathieu stability plots fo

improved resolution in mass spectra for resonance ejection experi-
ments. Similar results were reported in a stretched RIT in resonance
ejection experiments by [27] using their 4-electrode RIT [26].

For the ideal LIT, the equations of ion motion in the x- and y-
directions (see Fig. 2 for the directions in the RIT) are two uncoupled
linear Mathieu equations given by [5]

d2u

d�2
+ (au − 2qu cos 2�)u = 0 (1)

where

ax = −ay = 8eA2Udc

mr2
0 �2

and qx = −qy = 4eA2Vrf

mr2
0 �2

(2)

In Eqs. (1) and (2)au and qu are Mathieu parameters where u rep-

resents the x- or y-directions, � is the angular frequency of the rf
drive, � = �t/2 is dimensionless time, t is time, A2 is the weight of
the linear field, Udc and Vrf are the dc and rf potentials applied across
the two pairs of electrodes, respectively, e/m is the charge-to-mass
ratio of the ion, and r0 is a normalizing length.

The stability of ions in the LIT can be depicted on a Mathieu
stability plot using parameters au and qu (ax– qx for the 2D LIT and
az– qz for the 3D Paul trap). Fig. 1(a) delineates the region on the
ax– qx plane where both x- and y-direction motions are stable for
the LIT. Also shown for comparison, in Fig. 1(b), is the stable region
for the 3D Paul trap (see March and Hughes [17] for definitions of
az and qz for the 3D trap). It can be seen in the figures that the
stable region is bounded by values of ˇu between 0 and 1 (ˇu is a
parameter related to Mathieu parameters au and qu by a continued
fraction relationship [17]).

In mass selective boundary ejection experiments [33], the trap is
operated on the au = 0 line and ion destabilization occurs when its
qu value crosses the stability boundary at qcut−off. In 3D Paul traps
ion destabilization occurs at the ˇz = 1 curve (Fig. 1(b)) resulting in
ion ejection in the axial (z)-direction. In the ideal LIT, on the other
hand, ions which are trapped along the z-axis are destabilized in the
he LIT and (b) the 3D Paul trap.

x–y plane when their qx or qy reaches qcut−off (Fig. 1(a)). Here, since
both ˇx = 1 and ˇy = 1 intersect the ax = 0 line simultaneously at
qcut−off, there is an equal probability for ion exit in the x- and y-
directions.

When the fields within the trap are weakly nonlinear, as they are
in practical traps, the Mathieu stability plot gets distorted and, for
the 2D trap, this is likely to impact the direction in which ions get
ejected. This is not so for the 3D trap. For the 3D trap, considerable
research exists on understanding changes in the stability region
due to space charge [9,5,11] as well as due to field inhomogeneities
[2,13,25,28,21]. All these reports have discussed the distortions of
the stability region which, in the mass selective boundary ejection
experiments, would result in destabilization still occurring near the
nominal ˇz = 1curve. For the 3D Paul traps, since the nominal ejec-

tion point near the ˇz = 1 curve is far from the ˇr = 1 ejection curve,
ejection continues to primarily occur in the z-direction (perhaps
slightly earlier or later, an issue that has been dealt with in the ref-
erences cited above). In contrast, for the LIT, small nonideal effects
can call into play either of the ˇx = 1 or ˇy = 1 curves, showing
that directionality of ejection is an important issue. We observe that
adding a dc voltage to the rf excitation in Fig. 1(a) would in princi-
ple lead to preferential ejection in one direction, as also mentioned
in passing by Lammert et al. [15]. However, in this study, we con-
sider no dc and confine attention to operation along Udc = 0 line
(i.e., along the qx axis).

The present study investigates the direction of ion ejection in
the RIT. To do this we have taken up for investigation RITs of three
different geometries. In these geometries, we have assumed that
the flat planar electrodes are infinitely long. Further, we assume
that one pair of electrodes has slits in them at the centre, and the
other pair of electrode has no slits. Of the three RITs, one has a
symmetric design similar to that reported by Ouyang et al. [19],
and the other two have stretched geometries, one having a stretch
in the direction of electrode which have slits and the other hav-
ing a stretch in the direction of electrode which have no slits.
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3.1. Field computation using the BEM

In the present problem, the potentials on a number of conduct-
ing electrodes are specified. The field and potential at any given
point in space needs to be computed. In the BEM this is achieved
by first determining the unknown charge distribution on the elec-
trodes. Once the charge distribution is known, the field and the
potential anywhere in space are computed by superposition. In
A. Krishnaveni et al. / International Jou

A study of the ion dynamics in these three geometries will help
us identify the preferred direction of ion destabilization in these
instruments.

Our analysis has been carried out on two-dimensional (2D)
fields at the centre of an infinitely long mass analyzer. The bound-
ary element method (BEM) has been used for field computations.
The trajectory of ion motion has been generated using Runge Kutta
fourth order integration.

Three numerical experiments have been carried out here for
each of the three geometries. In the first, we generate the stabil-
ity plot to delineate the ranges of the rf and dc potentials within
which ion motion is stable. The second set of simulations generates
escape velocity plots for different value of rf with Udc = 0. This will
be used to provide additional evidence in our study of directional-
ity of ion ejection, in addition to indicating nonlinear resonances
which could effectively be used in resonance ejection experiments.
Finally, we simulate the mass selective boundary ejection exper-
iment to generate statistics to check for the directionality of ion
destabilization in the three RITs.

Note that the mass selective boundary ejection experiment,
unlike the resonance ejection experiment in which the ions are
naturally predisposed to distabilize in the direction of applied ac
auxiliary excitation, provides a suitable simulation environment
to study direction of distabilization of ions in the RITs. While the
first two simulations present general characteristics of the trap,
the third simulation addresses the behavior of ions in only mass
selective boundary ejection experiments and not other modes of
operation such as resonance ejection [23] or axial ejection experi-
ments [16].

In the next section, we present the geometries we have investi-
gated. Following this, in Section 3, the computational methods used
will be discussed. These will include charge and potential calcula-
tions and methods for generating stability plot and escape velocity
curves. Section 4 presents the results of our computations. Conclud-
ing remarks are given in Section 5. Also provided in the appendix
are the verification of the different numerical techniques adopted
in the study.

2. Geometries considered

The cross-sectional view of the RITs taken up for numeri-
cal investigations is presented in Fig. 2. In the figure, w is the
half-distance between the electrode in the x-direction, h is the half-

distance between the electrode in the y-direction, xs and ys are the
gaps between the electrodes in the x- and y-directions, respectively,
hs is the width of the slit in the electrodes and p is the width of the
electrode.

By varying w and h we obtained the three RIT geometries which
have been investigated in the present study. In the first, when w = h,
we get a symmetric RIT and in this paper we have referred to it as
RIT-S. The second geometry we have investigated is where w > h,
and since this has a stretch in the x-direction, it is labeled as RIT-X. In
the third geometry, where w < h, there is a stretch in the y-direction
and we have labeled it as RIT-Y.

The parameters which are common to all geometries are hs, and
p and these dimensions are fixed as 1 and 7 mm, respectively. Since
w and h vary in these three geometries, the parameters xs and ys also
vary. The geometry parameters used for the three traps investigated
are given in Table 1.

3. Computational methods

In this section we present salient features of the computational
methods used by us. We first introduce the methods for com-
Fig. 2. Geometry parameters of the RIT.

puting the field and the multipole coefficients. Next, we present
the method used for the determination of ion trajectories. Finally,
we describe the method for numerically determining the stability
region and the escape velocity diagram of the trap.

In this study we have assumed that the electrodes of the mass
analyzer are infinitely long. This enables us to carry out a 2D analysis
of the trap for ion motion close to the centre of the trap. For the
problem at hand the 2D analysis is considerably faster than a full
3D analysis.
this study the cross-sections of the electrodes remain invariant
in one direction with translation in the axial direction. So a two-
dimensional formulation which requires less computation than a
full three-dimensional formulation is used.

The electrodes are divided into a number of narrow strip ele-
ments for the BEM solution. Let the total number of elements be N.
For the i-th element let ri be the location, Vi be the applied poten-
tial, and qi be the unknown charge belonging to the element. Let
Gij ≡ Gij(ri, rj) be the potential at element i due to unit charge at
element j. The Gij are known as the charge to potential Green’s
functions. Then the potential at element i due to all the N element
charges is

∑N
j=1Gijqj . Since the applied potential at element i is Vi.

Table 1
Geometry parameters of the RIT studied

w h xs ys hs p

RIT-S 5.0 5.0 1.5 1.5 1.0 7.0
RIT-X 5.0 3.5 1.5 0.0 1.0 7.0
RIT-Y 3.5 5.0 0.0 1.5 1.0 7.0

All dimensions are in mm.
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We have
N∑

j=1

Gijqj = Vi, i = 1, . . . , N (3)

The above system of N equations can be solved to determine the N
unknown element charges qj, j = 1, . . . , N. For the computation of
Gij for i �= j the charge at element j can be regarded as a point charge.
But for the computation of Gii it is necessary to consider the charge
on the element to be distributed over the entire width in order to
avoid a singularity in the integral. The expression for computing Gij

will be discussed next.

3.1.1. Two-dimensional Green’s functions
The computation of two-dimensional Green’s function requires

the computation of potentials due to line charges. The field at point
(x, y) due to a line charge at (xi, yi) is given by [31]

E = ql

2��o

x̂(x − xi) + ŷ(y − yi)

(x − xi)
2 + (y − yi)

2
(4)

where ql is the charge per unit length of the line charge. A suitable
potential function satisfying E = −∇V is

V(x, y) = ql

2��o
ln

�0

�
(5)

where � =
√

(x − xi)
2 + (y − yi)

2 is the distance from the line
charge and the distance �0 is an arbitrary constant.

The potential at distance � from a line charge q is proportional
to q ln(�0/�) which is unbounded as � tends to infinity. Therefore,
the reference point for zero potential cannot be taken at infinity as
in 3D problems. Consequently, a cylinder with a sufficiently large
radius (large enough, say, to contain all the electrode including the
vacuum chamber) is taken as the surface having zero potential.
The Green’s function for a line charge including the effect of the
reference cylinder for i �= j, is given by,

Gij = 1
4��o

ln
(�i�j/R)2 + R2 − 2�i�j cos(�i − �j)

�2
i

+ �2
j

− 2�i�j cos(�i − �j)
(6)

where (�i, �i), (�j, �j) are the polar coordinates of the centres of
the i-th and the j-th elements, and R is the radius of the reference
cylinder. Note that Gij = Gji. For i = j,

Gii = 1
4��

(
2 + 2 ln

R − �2
i
/R

w /2

)
(7)
o i

where wi is the width of element i.

3.2. Multipole coefficients

To calculate the weights of the multipole coefficients directly
from the charge distribution, we first consider the general expres-
sion for a 2D potential in a polar coordinate system, which is given
by,

˚(�, �) =
∞∑

n=0

�n(an cos(n�) + bn sin(n�)) (8)

˚(�, �) = ˚0

∞∑
n=0

(
�

r0

)n

(An cos(n�) + Bn sin(n�)) (9)

Here an, bn correspond to the weights of the multipoles and are
referred to as multipole coefficients; �, � are the cylindrical polar
coordinates, and ˚0 is the applied potential difference across the
pairs of trap electrodes. In the mass spectroscopy literature, how-
ever, the normalized coefficients An and Bn are frequently used (and
Fig. 3. Cross-sectional view of the RIT with the widths of the two segments indi-
cated. Also shown in the diagram (as a dashed circle) is the imaginary cylindrical
electrode positioned at radius R from the center of the trap.

referred to as multipole coefficient) because they are dimension-
less and do not change when the size of a trap is scaled. The length
scale r0 used for normalization is a length indicating the size of the
trap. In the classical LIT, r0 is taken as the nearest distance from
the centre of the trap to the electrodes, but in traps with nonhy-
perbolic electrodes the selection of r0 is somewhat arbitrary. The
normalized multipole coefficients are related to the unnormalized
ones by

An = anrn
0

˚0
(10)

Bn = bnrn
0

˚0
(11)

Eq. (8) can be expanded as,

˚(�, �) = a0 + �(a1 cos(�) + b1 sin(�)) + �2(a2 cos(2�)
+b2 sin(2�)) . . . (12)

Now, at a distance far away from the electrode, the strip wi in
Fig. 3 can be visualized as a straight wire. The electric potential, ˚
at a point (�, �) from such a straight wire, which has uniform line
charge, qi, and is located at (�i, �i), is given as

˚ = qi

4��o
ln

(�i�/R)2 + R2 − 2�i� cos(� − �i)

�2
i

+ �2 − 2�i� cos(� − �i)
(13)

Fig. 4 shows the location of the line charge (�i, �i) on the elec-
trode and an arbitrary point (�, �) at which the potential is to be
calculated.

By simplifying Eq. (13), we get

˚(�, �) = qi

4��o
ln

R2

�2
i

1 + (�i�/R2)
2 − 2(��i/R2) cos(� − �i)

1 + (�/�i)
2 − 2(�/�i) cos(� − �i)

(14)

We note that

�i′ = R2

�i
(15)
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fication of Udc which results in ion destabilization (either the x- or
y-directions), fine tuning of Udc to identify its value at the stability
boundary is carried out by a bisection method. This procedure is
repeated for different values of Vrf till the entire stability region is
covered. In our program a flag has been set to identify the direction
Fig. 4. Location of the strip at (�i, �i) with respect to coordinates (�, �) where the
charge and the potential are to be computed.

is the distance of the image line charge from the origin. Then

˚ = qi

4��o
ln

�i′

�i
+ qi

4��o
ln

1 + (�/�i′ )
2 − 2(�/�i′ ) cos(� − �i)

1 + (�/�i)
2 − 2(�/�i) cos(� − �i)

(16)

By simplifying the logarithm in the second term of the Eq. (16) using

ln(1 + t2 − 2t cos(˛)) = −2
∞∑

n=1

tn cos(n˛)
n

(17)

we get

˚ = qi

4��o

(
ln

�i′

�i
+

∞∑
n=1

2�n

n

(
1

�n
i

− 1
�n

i′

)

× (cos(n�i) cos(n�) + sin(n�i) sin(n�))

)
(18)

Total potential at (�, �) is found by accumulating the contribution
due to all charge strips. The expression for total potential, due to N
charge strips, is given by

N∑ qi

(
�i′

∞∑2�n
(

1 1
)

˚ =
i=1

4��o
ln

�i
+

n=1
n �n

i

−
�n

i′

× (cos(n�i) cos(n�) + sin(n�i) sin(n�))

)
(19)

In order to obtain the multipole weights from the charge, we com-
pare Eq. (19) with Eq. (8). This yields

a0 = 1
4��o

N∑
i=1

qi ln
�i′

�i
(20)

and,

an = 1
4��o

N∑
i=1

2qi cos(n�i)
n

(
1

�n
i

− 1
�n

i′

)
(21)

bn = 1
4��o

N∑
i=1

2qi sin(n�i)
n

(
1

�n
i

− 1
�n

i′

)
(22)
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when n ≥ 1. The charges in the above equation are computed for
unit applied potential difference between the pairs of electrodes of
the trap. This is the convention followed in this work.1

Eqs. (21) and (22) have been used in conjunction with Eqs. (10)
and (11) to calculate the multipole coefficients for our RITs. It should
be noted that by the virtue of symmetry of the structure, the odd
multipole coefficients, A2n+1 and all the Bn, are zero.

Verifications of the methods for calculating potential and mul-
tipole coefficients have been presented in the Appendices A.1 and
A.2.

3.3. Trajectory calculation

The trajectories of ion motion were numerically obtained by
using Runge Kutta fourth order integration. The force on the ion
at point is obtained from the field computed using the BEM. The
initial position and velocity of the ion are taken to be small and the
integration is carried out for a prespecified (large) number of iter-
ations. For plotting the ion trajectory, we use the position in x- and
y-directions corresponding to each time step as the initial condition
for the next step.

3.4. Stability region

For the 2D LIT, ion motion in the x- and y-directions can be
described by the linear Mathieu equation and the stability plot
can be generated by using the continued fraction expression which
relates the parameters ˇu, au and qu [17]. For the RIT, this method of
analytically calculating the stability region is not justified since the
equations of motion in these traps are weakly nonlinear. Instead, we
have adopted a numerical technique for doing this. In our method,
for a given trap, for a chosen Vrf, a set of initial conditions corre-
sponding to position and velocity of the ion in x- and y-directions
and a Udc, the trajectory of the ion is numerically generated for
prespecified (large) number of iterations. If in these iterations the
ion amplitude does not exceed the trap boundary in either x- or
y-directions, ion motion is considered to be stable. To locate the
instability at this chosen Vrf, Udc is increased using a large step size
and the ion motion is made unstable. After this initial crude identi-
in which ions are destabilized.
In order to convert the stability region obtained above on the

Udc– Vrf plane to one on the ax– qx plane, we use the Eq. (2) to
obtain the ax, qx values for a pair of Udc, Vrf.

In all numerically generated stability regions for the RITs on the
Udc– Vrf plane, we have superposed the Mathieu stability plot for
an ideal LIT which has the same linear field (that is, the same a2 as
obtained from Eq. (21) with n = 2) as that of the RIT under study,
for the purpose of comparison. In order to do this, we consider a
symmetric LIT with hyperbolic electrodes, the distance from the
centre to any electrode being x0 = y0. The potential in this LIT is
given by ˚ = a0 + a2(x2 − y2). The potential on the x-electrode is,
therefore, a0 + a2x2

0, and on the y-electrode is a0 − a2x2
0. Since the

potential difference between the electrodes is 1, 2a2x2
0 = 1. Con-

sequently, for a given a2 an LIT which generates the same a2 can

1 It should be noted, however, that some authors (for example, Collings [4], Dou-
glas et al. [7]) report multipole coefficients obtained by applying a potential of +1
to one electrode pair and −1 to the other pair. This results in the numbers reported
by them for the multipole coefficients being double those reported by us.
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Table 2
Multipole coefficients obtained from BEM for RIT-S, RIT-X and RIT-Y

Multipole coefficients RIT-S RIT-X RIT-Y

A2 −0.5373 −0.6829 −0.6749

Normalizing length r0 is 5 mm.

be found by choosing x0 = 1/
√

2a2. In the ideal LIT since the ax–
qx stability plot is well known, Udc and Vrf can be easily generated
using Eqs. (2) and (21).

A verification of the method outlined above has been presented
in the Appendix A.3.

3.5. Calculation of escape velocity

Escape velocity is the minimum velocity required for an ion,
starting at the center of the trap, to escape from the trap [1].

To calculate the escape velocity of an ion of mass m at a chosen
Vrf, we numerically integrate the ion motion using a set of initial
conditions (x, ẋ), (y, ẏ). In our study the computations have been
carried out for a single ion, for a range of rf voltage amplitudes with
Udc = 0. The rf phase angle was incremented in 16 steps of �/8, and

angle of initial velocity in 6 steps of �/3 for each Vrf. From these 96
escape velocities values, the minimum was chosen for generating
the escape velocity plots.

4. Results and discussion

4.1. Multipole coefficients

Multipole coefficients, A2, which have been used in the present
study are reported in Table 2 for the three RITs that have been inves-
tigated. These coefficients have been obtained using Eqs. (10) and
(21).

4.2. Stability region

Figs. 5–7 show the stability regions for RIT-S, RIT-X and RIT-Y,
respectively, on both the Udc– Vrf as well as ax– qx planes. For gen-
erating these plots, the mass of the ion was taken to be 78 Th, r0 as 5
mm, the rf drive frequency as 1 MHz (� = 2� × 106) and the initial
conditions (x, ẋ), (y, ẏ) was taken as (0.001w m, 0.0 m/s), (0.001h m,
0.0 m/s), respectively, where w and h are the half-distance between

Fig. 5. Stability region for the RIT-S on the Udc– Vrf and ax– qx planes.
Fig. 6. Stability region for the RIT-X on the Udc– Vrf and ax– qx planes.
the electrodes in the x- and y-direction, respectively. The values of
A2 for computing the corresponding ax and qx values in these plots
were taken from Table 2 for the respective traps. The open circles
represents ions which destabilize in the x-direction and the dots
represents the ions that destabilize in the y-direction. Also super-
posed on these plots, with continuous lines, are the stability curves
for the corresponding ideal LIT.

4.2.1. Stability region for the RIT-S
Fig. 5 shows the stability boundaries for RIT-S as obtained by us

numerically on the Udc– Vrf and ax– qx planes. Indicated in the fig-
ure is the rf amplitude where the x- and y-stability curves intersect
the Udc = 0 line. It can be seen that both stability curves intersect
the Udc = 0 line at Vrf ≈ 342 V0−p. Also superposed in the figure is
the stability curve of the corresponding ideal LIT. For lower values
of Vrf, the LIT curve and the numerically generated stability points
for RIT-S are in close agreement and it is only at higher values of Vrf,
beyond the apexes, that they deviate. In the ideal LIT, both the sta-
bility curves intersect Udc = 0 line at Vrf ≈ 337 V0−p, a value lower
than Vrf ≈ 342 V0−p observed for the RIT-S. A delayed ejection is

Fig. 7. Stability region for the RIT-Y on the Udc– Vrf and ax– qx planes.
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Fig. 8. Escape velocity plot for the RIT-S for different value of Vrf . qx values are also
indicated in the figure.

LIT with cylindrical electrodes. In the context of the RIT, one promi-
nent resonance, which occurs close to qx = 0.64 in all the plots, is
due to octopole resonance and a detailed study of this resonance
is presented in Abraham et al. [1]. The other prominent resonance
close to 0.4 is the ˇ = 1/3resonance, possibly due to dodecapole
superposition. All others are combinational resonances involving
sum and difference sideband frequencies of ion secular oscillations
(as discussed in Franzen et al. [10]). Because of the top-bottom sym-
metry of the RITs assumed in our simulations, the experimentally
observed resonance in the vicinity of qx = 0.8 reported by Tabert et
al. [30] will not appear in our simulations.

What is important to note in these figures is the direction of
ejection of ions at different Vrf (or qx) values. For the RIT-S, as seen
in Fig. 8, escape predominantly occurs in the x-direction for most of
the stable region of the trap operation. It is only close to the stability
boundary, where the circles and dots are randomly distributed, our
A. Krishnaveni et al. / International Jou

predicted for the RIT-S with qcut−off ≈ 0.917 and because both the
x- and y-stability curves intersect the Udc = 0 line simultaneously,
ions will be equally predisposed to destabilize in the two directions.

We point out here an important difference between the results
of our computations with the experimental results reported in
Ouyang et al. [19] for a trap with somewhat similar parameters
and operating conditions. While the Vrf at the stability boundary
is close to 342 V0−p in our computations, they report an experi-
mentally observed value close to 260 V0−p. However, the results
reported in our simulations compares favorably with the experi-
mental results reported by Zhang et al. [32] for a slightly different
geometry of the RIT which has y0 = 3.8 mm.

4.2.2. Stability region for the RIT-X
Fig. 6 shows the stability region for the RIT-X (where the stretch

is in the x-direction) on the Udc– Vrf and ax– qx planes. This plot
is in close agreement with the experimentally obtained stability
boundary reported by Song et al. [27] for their 6-electrode RIT.

Two points need to be noted here. First is that the Vrf (≈
265 V0−p) at which ions are destabilized, is considerably smaller
than the corresponding value for the RIT-S (where Vrf was seen to be
close to ≈ 342 V0−p). The second point is that the x-stability curve
crosses the Udc = 0 line first, implying that the ion ejection will
occur in x-direction preferentially in the mass selective boundary
ejection experiment.

Comparison of this plot with the superposed plot of the corre-
sponding ideal LIT makes for some interesting observations. It can
be seen that three of the stability curves of the RIT-X closely match
that the stability lines of the ideal LIT and it is the y-direction stabil-
ity curve which shows considerable deviation. The deviation in the
y-direction stability curve will not impact trap performance since it
is the x-direction stability curve which will be encountered by the
ions first in mass selective boundary ejection experiments. Con-
sequently, not only will the ions preferentially destabilize in the
x-direction but they will also destabilize at a Vrf close to the cor-
responding LIT. Our simulations show that the ion destabilization
for the RIT-X occurs close to qx = 0.908 unlike the delayed ejection
suggested for the RIT-S.

4.2.3. Stability region for the RIT-Y
Fig. 7 shows the stability region for the RIT-Y on the Udc– Vrf

and ax– qx planes. The Vrf value at the stability boundary is close to
268 V0−p and in this case it is the y-stability curve which crosses
the Udc = 0 line first, implying that the ion ejection will occur

in y-direction preferentially in mass selective boundary ejection
experiments. As in the case of the RIT-X, the y-stability curve which
crosses the Udc = 0 line closely matches the corresponding curve
of the ideal LIT. In this trap, two stability curves deviate from
the corresponding LIT curves, but here too this should not impact
trap performance in mass selective boundary ejection experiments
since it is the y-direction stability curve which is first encountered
by the ion. The ion destabilization for the RIT-Y occurs close to
qx = 0.908, a behavior similar to the RIT-X.

4.3. Escape velocity

The escape velocity simulations were carried out on a singly
charged ion of mass 78 Th with initial conditions (x, ẋ) and (y, ẏ)
being (0 m, 0.1 m/s) and (0 m, 0.1 m/s), respectively.

Figs. 8–10 are escape velocity plots for RIT-S, RIT-X and RIT-Y,
respectively, along the Vrf axis. In these simulations Udc was set to
zero. Also indicated in the figure are the value of qx.

The dips in the escape velocity plots are indications of nonlinear
resonances within the trap and have the general form of the insta-
bility curves experimentally determined by Drakoudis et al. [8] for a
Fig. 9. Escape velocity plot for the RIT-X for different value of Vrf . qx values are also
indicated in the figure.
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Fig. 10. Escape velocity plot for the RIT-Y for different value of Vrf . qx values are also
indicated in the figure.

simulations suggest that we see a mixed response and there is no
definitive conclusion that can be drawn from this on directionality
of ion ejection.

The picture is clearer for the escape velocity plots for the RIT-X
(Fig. 9) which show very clearly that close to the stability boundary,
escape takes place only in the x-direction, that is in the direction
of the stretch of the trap. The picture is equally consistent for the
RIT-Y, shown in Fig. 10, where at the stability boundary escape is
seen to take place in the y-direction, the direction of the stretch.

4.4. The boundary ejection experiment

Our final simulation is the mass selective boundary ejection
experiment to check for the direction in which the ion gets ejected
from the trap. Unlike the resonance ejection experiment where the
ion exit occurs in the direction of electrodes across which auxiliary
ac excitation is applied, in the mass selective boundary ejection
experiment carried out in our simulations, ions are free to destabi-
lize in any direction they choose. Consequently, these experiments
will enable us to get a further insight into the preferred direction-

ality of ion ejection in these traps.

In the conventional experiment, a fragment ion is formed in
the trap with a specific qx value (which depends on the initial Vrf
applied across the electrodes during ionization). Then, in order to
mass selectively eject the ions from the trap, the Vrf is increased at a
preset rate. When Vrf reaches a value corresponding to the stability
boundary for the selected ion, ion ejection occurs.

In our simulations we have chosen an ion of mass 78 Th. The
initial Vrf was fixed at 200 V0−p. The Vrf was increased at a rate of
20V/200 �s (which is approximately 1 Th/200 �s). The initial con-
ditions for the ion (x, ẋ) and (y, ẏ) was chosen to be (0 m, 0.1 m/s)
and (0 m, 0.1 m/s), respectively. In order to cover all initial con-
ditions under which the ion could be launched, its direction and
rf phase were varied. In our simulations, both the velocity angle
(which represents the direction) as well as the phase of the rf drive
were varied in steps of 6 ◦ (60 steps in the velocity angle and 60
steps in the rf phase), giving a total of 3600 simulations. The direc-
tion (x or y) in which the ion amplitude reaches the trap dimension
in the simulation is flagged in these simulations.

Table 3 presents the statistics we obtained for the RIT-S, RIT-
X and RIT-Y on the 3600 simulations which were carried out on

Y

Mass Spectrometry 275 (2008) 11–20

Table 3
Table showing the statistics for the three configurations of the RIT

Configuration x Electrode y Electrode Inter-electrode gap

RIT-S 1867 1730 3
RIT-Y 8 3592 0
RIT-X 3567 33 0

each of the RITs. Clearly, they follow the pattern and conclusions
we reached in the earlier two simulations. The RIT-S shows that the
ion is equally predisposed to go in either direction. The number 3
specified against the RIT-S, indicates the number of ions that got
ejected through the gaps between the electrodes. In the case of the
RIT-X and the RIT-Y, the clear preference of ion to go in the direction
of stretch in evident.

5. Concluding remarks

To investigate the directionality of ion motion in the RIT-S, RIT-
X and RIT-Y, three numerical simulations were carried out for each
of the RITs. In the first, we mapped the stability region of the trap
on the Udc– Vrf plane. This was done to check the direction of ion
destabilization at the stability boundary along the Udc = 0 line. In
the second, we traced the escape velocity of the ions to verify the
direction of ejection at the stability boundary. Finally, we simulated
the mass selective boundary ejection experiment on the three RITs.

For the RIT-S, the three simulations indicated that ion destabi-
lization occurs in both the x- and y-directions with roughly equal
probability along the Udc = 0 line. The picture was seen to be dif-
ferent for the stretched traps. For the RIT-X, all three simulations
clearly indicated that ion destabilization occurred in the x-direction
and for the RIT-Y, ion destabilization took place in the y-direction.
These correspond to the direction of the stretch in these RITs.

A few interesting points emerge from the discussion presented
above. First is in relation to the direction of ion ejection. It can be
seen that for the RIT-S, the symmetric trap, the stability curves in
the x- and y-directions simultaneously intersect the Udc = 0 line.
This implies that there is an equal probability for the ions being
ejected in the two directions. For RIT-X and RIT-Y, on the other
hand, the two stability curves intersect away from the Udc = 0
line. In the case of RIT-X (Fig. 6), this intersection occurs below
the Udc = 0line, while for RIT-Y (Fig. 7), the intersection occurs
above the Udc = 0line. As a consequence, in mass selective bound-
ary ejection experiments, for the RIT-X, it is the x-direction stability

boundary that the ion encounters first, while for the RIT-Y, it is
the y-direction stability boundary which is first encountered. This
results in a preferential ejection of ions in the x-direction for RIT-X
and in the y-direction for RIT-Y. In other words, the ions have a pre-
ferred direction for destabilization in stretched trap, the preferred
direction being the direction of the stretch.

The second point that emerges from the simulations is in regard
to the qx value at the stability boundary. For the RIT-S, delayed
ejection is predicted, with a qx ≈ 0.917. For the RIT-X and the RIT-
, on the other hand, the observed situation is unexpected. For

devices which are likely to have large nonlinear fields on account
of the modified geometry, our simulations predict ion ejection at
qx ≈ 0.908, which matches the nominal stability boundary of the
linear LIT within the precision of our simulations. The respective
stability boundaries for the RIT-X and RIT-Y also match closely with
the corresponding curves for the ideal RIT.

Based on these numerical simulations we see that the detection
sensitivity of the current instruments with one detector can be dou-
bled by stretching the trap in the direction in which the detector
is positioned. Here, because there is preferential ejection of ions in
the direction of stretch, at least 50% of the destabilized ions will go
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in the direction of the detector. The detection sensitivity can be fur-
ther doubled if two detectors are used, with both being positioned
on opposite electrodes in the direction of the stretch. However,
four detectors are not expected, for stretched traps, to provide any
significant advantage over two correctly positioned detectors.

Of course, in these instruments, there is no guarantee that all
destabilized ions will exit through the slit (which is positioned at
the centre of the electrode) to reach the detector, since several ions
may hit the electrode wall. In order to maximize the number of ions
getting through the slit, further work will be necessary to investi-
gate modification of the shape of the electrodes to provide suitable
ion optics which will guide ions through the slit.
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Appendix A. Verification

To verify the accuracy of our numerical methods we have pro-
vided comparisons with a few results reported in literature.
A.1. Verification of potential calculation

In order to verify the correctness of the potential calculation,
we compare our numerically obtained values with values obtained
from an analytical expression. Fig. A.1 shows the arrangement of
electrodes used for deriving the analytical expression for the poten-
tial within the structure. This set-up has plates arranged in form of
a rectangle with potential applied as shown. The potentials applied
provide the boundary values for a problem which is referred to
as Dirichlet boundary value problem. This problem can be solved
using the separation of variables method [14]. The geometry con-
sidered here is different to that of the RIT in that there is no spacing
between the electrodes and there are no slits.

On solving Laplace equation for potential, ˚(x, y), using variable
separable method, we get

˚(x, y) = 1
2

− 4
�

∞∑
k=0

(−1)k cosh((k + 1/2)�x/h) cos((k + 1/2)�y/h)
(2k + 1) cosh((k + 1/2)�w/h)

(23)

Fig. A.1. Diagram showing plates arranged as a rectangle with boundary conditions
for comparing the approximate potential computed by the BEM with the separation
of variables series solution.
Table A.1
Maximum difference in potential values calculated by the BEM and the analytical
method

Number of divisions per electrode Percentage difference

15 0.30
20 0.22
25 0.18
30 0.15

Table A.2
Comparison of coefficients obtained for the RITs reported by Ouyang et al. [19] with
those obtained by us (BEM)

h Ouyang et al. [19] BEM
A2 A2

5.0 0.541 −0.5410
4.2 0.633 −0.6283
4.0 0.654 −0.6478

w is taken as 5.0 mm in all the three cases. Units of h are in mm.

In order to compare the potential obtained by BEM with those
predicted by Eq. (23), we present in Table A.1 the maximum per-
centage difference in potential within an area of 80% of the central
region of the structure. Column 1 of the table indicates the num-
ber of divisions per electrode in the BEM computations. It can be
seen that although the accuracy increases with increasing number
of divisions, the 20 divisions we have chosen in the present study
is adequate.

A.2. Verification of multipole coefficients

Table A.2 presents a comparison of multipole coefficients
obtained by BEM with the results reported by Ouyang et al. [19]
for the three RITs they have investigated. The sign of the multi-
pole coefficients obtained by BEM are opposite to that reported by
Ouyang et al. [19] on account of the convention adopted by us being
different from those adopted by Ouyang et al. [19]. The magnitudes
of the multipole coefficients obtained by BEM match those obtained
by Ouyang et al. [19].
Table A.3 presents a similar comparison with the multipole coef-
ficients reported by Collings [4] for the trap in that study. Here the
values computed match the values reported by Collings [4] with an
accuracy of 10−3. It should be noted that the convention used in
Collings [4] with regard to the definition of multipole coefficients
is to set the potential of +1 to one pair of electrodes and a potential
of −1 to the other. It is for this reason that the A2 values reported in
Table A.3 are nearly double of the A2 values reported in Table A.2.

In both cases the BEM provides a close match.

A.3. Verification of stability plot

To verify the numerical method developed by us for generating
the stability plot, we compare the theoretical stability boundary
of the ideal LIT with the numerically generated stability boundary
using the method outlined in this paper.

Fig. A.2 presents the stability plot obtained by us numerically
on the Udc– Vrf plane (marking them with open circles and dots in
the diagram) and by theoretical considerations (continuous line)
discussed in Section 3.4.

Table A.3
Comparison of coefficients obtained from BEM with results reported by Collings [4]

Collings [4] BEM

A2 1.001462 1.0029411
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As can be seen in the figure, the points obtained numerically are
in close agreement with the line obtained by theoretical consider-
ations, thus verifying numerical method adopted here.
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